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Like heme peroxidases and other heme enzymes, myoglobin 
forms oxyferryl (FeIV=0) on reaction with peroxides.' We have 
recently observed2 slow intramolecular electron transfer (ET) to 
the oxyferryl heme of cytochrome c peroxidase (CCP) from &y 
Ru" (asRu = pentaammineruthenium) bound at His60 and 
proposed a large reorganizational energy (X) for oxyferryl heme. 
An obvious test of this large postulated X is to directly compare 
intramolecular ET rates between oxyferryl and asRu centers in 
myoglobin with the corresponding rates in zinc-substituted sperm 
whale (SWMb) and recombinant human myoglobins (RHMb).3'4 

Since the oxyferryl heme of horse heart myoglobin (HHMb) is 
significantly more stable than that of SWMb,5 the former protein 
was chosen for this study. A asRu group was attached to the 
surface His48 of HHMb,6 and rates of ET over the 12.7-A distance 
between the asRu center and the ferric and oxyferryl hemes were 
measured by pulse radiolysis at Brookhaven National Laboratory.7 

HHMb (0.5-10 /tM) solutions were prepared in N20-saturated 
sodium phosphate buffer at pH 7.0 (40 mM) containing 12 mM 
HCOONa to generate CO2- radicals via reaction with OHv All 
pulse radiolysis experiments were performed at 25 0C using 2.0-
or 6.1-cm path lengths. The dose in each pulse, as calibrated by 
thiocyanate dosimetry,8 was chosen to generate sufficient CO2-
to reduce <10% of the protein. 

The bimolecular rate constant for the reduction of native 
HHMb(Fe»I-OH2) by CO2- was determined to be 2 X 10« M"1 

s_1 by monitoring the appearance of HHMb(Fe") at 434 nm.9 
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Bimolecular reduction of the a5RuHI(His48) center in modified 
HHMb by CO2- was found to have a rate constant ~ 6-fold 
higher than that for heme reduction;9 thus, 85% of the reduction 
occurred at the Ru111 center. Since the reduction potentials for 
the Ru and heme centers are closely matched,10 the observed rate 
constant for intramolecular ET from Ru11 to the heme follows 
reversible first-order kinetics: 

fast 

a5Runi(His48)—Fe111-OH2 -* 
C O 2 -

a5Ru"(His48)—Fe1"-OH2 (1) 

* i 

a5Ru"(His48)—Fem—OH2 — 
*- i 

a5Rum(His48)—Fe" + H2O (2) 

The observed rate constant (&obs = k{ + k.i) is 0.059 ± 0.003 s"1, 
which is essentially identical to that observed previously for the 
a5Ru(His48) derivative of SWMb.11'12 Also, as with SWMb,11 

addition of CO trapped the Fe" heme and transformed the 
equilibrium in eq 2 into an irreversible reaction. These results 
establish that the kinetics and thermodynamics10 of ET in the 
asRu(His48) derivatives of SWMb and HHMb are very similar, 
which is not surprising since the structures of the two proteins 
are also very similar.13 

The rate of intramolecular ET to the Fe IV=0 heme of HHMb 
was measured after reaction with excess H2O2.

14 Following the 
60-ns pulse, rapid reduction of Ru111 by CO2- occurred, and slow 
reduction of the oxyferryl to ferric heme was observed at 409 and 
421 nm:''14 

kob. 

a5Ru"(His48)—FeIV=0 — a5Rum(His48)—Fe"1- OH2 

(3) 

The change in heme absorbance at 409 nm and the fit to first-
order kinetics are shown in Figure IA. The dependence of the 
kobs on the initial concentration of asRuin(His48)—FeIV=0 is 
shown in Figure IB. The rates are essentially independent of 
protein concentration, establishing that bimolecular ET processes 
are insignificant, and the average value of k,,^ is 0.19 ± 0.02 s_1 

for reaction 3. This rate constant is 5-6 orders of magnitude 
smaller than those measured for Ru/Zn SWMb and RHMb, 

a5Rum(His48)—3ZnP* — 

a5Run(His48)—ZnP+ — a5RuHI(His48)—ZnP (4) 

where k( and kh are 7 X 104 and 1 X 105 s"1 at -AG0 values of 
0.82 and 0.96 eV, respectively.3'4 Thus, at the same driving force 
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Figure 1. (A) Observed absorbance change at 409 nm vs time following 
pulse radiolysis of 2 ̂ M a5Rum(His48)—Fe I V=0 horse heart myoglobin 
in N20-saturated, 40 mM sodium phosphate, 12 mM sodium formate, 
pH 7.0, / = 0.1 M, 25.2 0C, path length 2.0 cm. The concentration of 
CO2 '" generated in the pulse was 0.37 /M, and the observed Ae4^ ~ 23 
mM"1 cm-1 is only 25% of that expected for HHMb(Fe I V=0) reduction 
due to competition from CO2*- self quenching and scavengers. The solid 
line shows the fit of the experimental points to first-order kinetics. (B) 
Dependence of the observed first-order rate constant &<*, for intramolecular 
ET [a5Ruu(His48) - • F e , v = 0 ] on protein concentration. 

of H H M b is ~ 1 OMbId slower than that to the Zn + porphyrin 
center. To ensure that reaction of HHMb(Fe" 1 ) with H 2 O 2 , 
which also generates a short-lived, unidentified radical,16 did not 
alter the polypeptide between the Ru and heme centers, the ET 
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rate was remeasured following reduction of the F e l v = 0 heme.17 

After reduction, kob, (eq 2) was 0.063 ± 0.016 s"1, indicating that 
radical formation and decay do not retard ET. Consistent with 
slow intramolecular reduction of the oxyferryl heme, the bimo-
lecular rate constant for the reduction of unmodified HHMb-
(FeIV=O) by C O 2 - was observed to be <105 M"1 s"1, which is 
>3 orders of magnitude smaller than that observed for HHMb-
(F6IIi—QH2) under the same conditions. 

Assuming the same electronic coupling terms in a5Ru(His48)-
Mb and the corresponding Zn-substituted Mbs,18 rate-limiting 
ET would require a reorganizational energy (X) of 3.1 eV for 
reaction 3, compared to X ~ 1.3 eV for the Zn-Mbs.4'" For 
a5Ru"(His)CCP(Fe IV=0), a kob, of 10« s-1 is predicted for ET 
over 12.7 A,2021 suggesting a small X as in the Zn-Mbs.4 However, 
the surprisingly slow intra- and bimolecular reduction of HHMb 
oxyferryl heme suggests that ET may not be rate-limiting in this 
case. A possible explanation is that protonation of the oxygen 
atom precedes ET to oxyferryl hemes. Thus, a lack of proton 
donors in the hydrophobic Mb heme pocket, unlike in the CCP 
pocket, would give rise to rate-limiting protonation in the former 
and rate-limiting ET in the latter (as in the Zn-Mbs). Experiments 
(driving force and temperature dependence, H/D isotope effects, 
etc.) to determine the nature of the rate-limiting step for reaction 
3 are in progress. 
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